Skip to content
🔢 Basic Arithmetic
- a+b=b+aa + b = b + a (Commutative Property of Addition)
- a×b=b×aa \times b = b \times a (Commutative Property of Multiplication)
- (a+b)+c=a+(b+c)(a + b) + c = a + (b + c) (Associative Property of Addition)
- (a×b)×c=a×(b×c)(a \times b) \times c = a \times (b \times c) (Associative Property of Multiplication)
- a(b+c)=ab+aca(b + c) = ab + ac (Distributive Property)
- a−(−b)=a+ba – (-b) = a + b
- a÷b=a×1ba \div b = a \times \frac{1}{b}
- a0=1a^0 = 1 (any number except 0)
- a1=aa^1 = a
- a−n=1ana^{-n} = \frac{1}{a^n}
✖️ Multiplication Tables (Quick Formulae)
- n×0=0n \times 0 = 0
- n×1=nn \times 1 = n
- n×10=n0n \times 10 = n0
- n×11=n0+nn \times 11 = n0 + n
- 2n=n+n2n = n + n
🧮 Algebra
- (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
- (a−b)2=a2−2ab+b2(a – b)^2 = a^2 – 2ab + b^2
- (a+b)(a−b)=a2−b2(a + b)(a – b) = a^2 – b^2
- a2−b2=(a+b)(a−b)a^2 – b^2 = (a + b)(a – b)
- (x+a)(x+b)=x2+(a+b)x+ab(x + a)(x + b) = x^2 + (a + b)x + ab
- ax+b=0⇒x=−baax + b = 0 \Rightarrow x = -\frac{b}{a}
- ax2+bx+c=0⇒x=−b±b2−4ac2aax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}
- (x+y)3=x3+3x2y+3xy2+y3(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3
- (x−y)3=x3−3x2y+3xy2−y3(x – y)^3 = x^3 – 3x^2y + 3xy^2 – y^3
- x3−y3=(x−y)(x2+xy+y2)x^3 – y^3 = (x – y)(x^2 + xy + y^2)
📐 Geometry
2D Shapes:
- Perimeter of square = 4a4a
- Area of square = a2a^2
- Perimeter of rectangle = 2(l+b)2(l + b)
- Area of rectangle = l×bl \times b
- Area of triangle = 12×b×h\frac{1}{2} \times b \times h
- Area of circle = πr2\pi r^2
- Circumference = 2πr2\pi r
- Diameter = 2r2r
- Area of parallelogram = b×hb \times h
- Area of trapezium = 12(a+b)h\frac{1}{2}(a + b)h
3D Shapes:
- Volume of cube = a3a^3
- Volume of cuboid = l×b×hl \times b \times h
- Volume of sphere = 43πr3\frac{4}{3}\pi r^3
- Volume of cylinder = πr2h\pi r^2 h
- Volume of cone = 13πr2h\frac{1}{3}\pi r^2 h
- Surface area of cube = 6a26a^2
- Surface area of cuboid = 2(lb+bh+hl)2(lb + bh + hl)
📏 Mensuration
- Diagonal of rectangle = l2+b2\sqrt{l^2 + b^2}
- Diagonal of square = 2a\sqrt{2}a
- Height of equilateral triangle = 32a\frac{\sqrt{3}}{2}a
- Radius from area of circle = Aπ\sqrt{\frac{A}{\pi}}
- Slant height of cone = r2+h2\sqrt{r^2 + h^2}
📉 Trigonometry (Basic)
- sin2x+cos2x=1\sin^2 x + \cos^2 x = 1
- tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}
- secx=1cosx\sec x = \frac{1}{\cos x}
- cscx=1sinx\csc x = \frac{1}{\sin x}
- cotx=1tanx\cot x = \frac{1}{\tan x}
- sin(2x)=2sinxcosx\sin(2x) = 2\sin x\cos x
- cos(2x)=cos2x−sin2x\cos(2x) = \cos^2 x – \sin^2 x
- tan(2x)=2tanx1−tan2x\tan(2x) = \frac{2\tan x}{1 – \tan^2 x}
🧭 Coordinate Geometry
- Distance formula = (x2−x1)2+(y2−y1)2\sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2}
- Midpoint = (x1+x22,y1+y22)\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
- Slope = y2−y1x2−x1\frac{y_2 – y_1}{x_2 – x_1}
- Equation of line = y=mx+cy = mx + c
- General line: Ax+By+C=0Ax + By + C = 0
📊 Statistics
- Mean = Sum of observationsNumber of observations\frac{\text{Sum of observations}}{\text{Number of observations}}
- Median = Middle value in sorted list
- Mode = Most frequent value
- Range = Max – Min
- Variance = ∑(xi−xˉ)2n\frac{\sum(x_i – \bar{x})^2}{n}
- Standard deviation = variance\sqrt{\text{variance}}
- Mean of first nn natural numbers = n(n+1)2n\frac{n(n+1)}{2n}
- Mean of squares = n(n+1)(2n+1)6n\frac{n(n+1)(2n+1)}{6n}
🎲 Probability
- Probability = Favorable outcomesTotal outcomes\frac{\text{Favorable outcomes}}{\text{Total outcomes}}
- P(E)+P(not E)=1P(E) + P(\text{not E}) = 1
- Compound Probability (Independent): P(A∩B)=P(A)×P(B)P(A \cap B) = P(A) \times P(B)
- Union (Mutually Exclusive): P(A∪B)=P(A)+P(B)P(A \cup B) = P(A) + P(B)
🔢 Number System
- Even Number = 2n2n
- Odd Number = 2n+12n + 1
- Prime Number: Only divisible by 1 and itself
- LCM of (a,b) = abGCD(a,b)\frac{ab}{\text{GCD}(a,b)}
- HCF = Highest common factor
⏱ Time, Speed, and Distance
- Speed = DistanceTime\frac{\text{Distance}}{\text{Time}}
- Distance = Speed×Time\text{Speed} \times \text{Time}
- Time = DistanceSpeed\frac{\text{Distance}}{\text{Speed}}
- Relative speed = Sum or difference of individual speeds\text{Sum or difference of individual speeds}
💸 Commercial Mathematics
- Simple Interest = P×R×T100\frac{P \times R \times T}{100}
- Compound Interest = P(1+R100)T−PP(1 + \frac{R}{100})^T – P
- Profit = Selling Price – Cost Price
- Loss = Cost Price – Selling Price
- Discount = Marked Price – Selling Price
- Percentage = PartWhole×100\frac{\text{Part}}{\text{Whole}} \times 100
📈 Algebraic Identities (More)
- x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x + y)(x^2 – xy + y^2)
- an×am=an+ma^n \times a^m = a^{n+m}
- anam=an−m\frac{a^n}{a^m} = a^{n-m}
- (am)n=amn(a^m)^n = a^{mn}
- (ab)n=anbn(ab)^n = a^n b^n
⛏ Miscellaneous Formulas (Quick Use)
- Sum of first n natural numbers = n(n+1)2\frac{n(n+1)}{2}
- Sum of squares of first n numbers = n(n+1)(2n+1)6\frac{n(n+1)(2n+1)}{6}
- Sum of cubes of first n numbers = (n(n+1)2)2\left(\frac{n(n+1)}{2}\right)^2
- a×b\sqrt{a \times b} = Geometric mean of a and b
- 2aba+b\frac{2ab}{a + b} = Harmonic mean of a and b
- Area of rhombus = 12×d1×d2\frac{1}{2} \times d_1 \times d_2
- Volume of hemisphere = 23πr3\frac{2}{3}\pi r^3
- Surface area of hemisphere = 3πr23\pi r^2
- Area of ellipse = πab\pi ab
- Volume of prism = base area × height
- Volume of pyramid = 13×Base Area×h\frac{1}{3} \times \text{Base Area} \times h
- Surface area of sphere = 4πr24\pi r^2
- Perimeter of semicircle = πr+2r\pi r + 2r
- Compound ratio of a:b and c:d = ac : bd
- Square root of a fraction = ab=ab\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}
- (a+b+c)2=a2+b2+c2+2(ab+bc+ca)(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
- (a−b−c)2=a2+b2+c2−2ab+2bc−2ca(a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca
- (a+b)3=a3+b3+3ab(a+b)(a + b)^3 = a^3 + b^3 + 3ab(a + b)
- (a−b)3=a3−b3−3ab(a−b)(a – b)^3 = a^3 – b^3 – 3ab(a – b)
- an−bn=(a−b)(an−1+an−2b+…+bn−1)a^n – b^n = (a – b)(a^{n-1} + a^{n-2}b + \ldots + b^{n-1})
- an+bna^n + b^n (even n) can’t be factorized over reals
- log(ab)=loga+logb\log(ab) = \log a + \log b
- log(a/b)=loga−logb\log(a/b) = \log a – \log b
- logan=nloga\log a^n = n \log a
- logba=logalogb\log_b a = \frac{\log a}{\log b}
- ex=1+x+x22!+x33!+…e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
- lne=1\ln e = 1
- ln1=0\ln 1 = 0
⛽ Mensuration (Advanced)
- Area of sector = θ360×πr2\frac{\theta}{360} \times \pi r^2
- Arc length = θ360×2πr\frac{\theta}{360} \times 2\pi r
- Area of ring = π(R2−r2)\pi(R^2 – r^2)
- Perimeter of parallelogram = 2(a+b)2(a + b)
- Height of parallelogram = Areabase\frac{\text{Area}}{\text{base}}
- Apothem of regular polygon = s2tan(π/n)\frac{s}{2\tan(\pi/n)}
- Area of regular polygon = 12nsa\frac{1}{2}nsa
- Surface area of cone = πr(l+r)\pi r (l + r)
🔺 Advanced Trigonometry (129–150)
- sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B
- cos(A±B)=cosAcosB∓sinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B
- tan(A±B)=tanA±tanB1∓tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
- sin(90∘−x)=cosx\sin(90^\circ – x) = \cos x
- cos(90∘−x)=sinx\cos(90^\circ – x) = \sin x
- tan(90∘−x)=cotx\tan(90^\circ – x) = \cot x
- sin(2x)=2sinxcosx\sin(2x) = 2\sin x\cos x
- cos(2x)=1−2sin2x=2cos2x−1\cos(2x) = 1 – 2\sin^2 x = 2\cos^2 x – 1
- tan(2x)=2tanx1−tan2x\tan(2x) = \frac{2\tan x}{1 – \tan^2 x}
- Law of sines: asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
- Law of cosines: c2=a2+b2−2abcosCc^2 = a^2 + b^2 – 2ab\cos C
- cot2x+1=csc2x\cot^2 x + 1 = \csc^2 x
- tan2x+1=sec2x\tan^2 x + 1 = \sec^2 x
- Angle sum in triangle = 180∘180^\circ
- Radian = π180×degrees\frac{\pi}{180} \times \text{degrees}
- Degrees = 180π×radians\frac{180}{\pi} \times \text{radians}
- sinx≈x\sin x \approx x, cosx≈1−x22\cos x \approx 1 – \frac{x^2}{2} (for small x)
- Height = Base×tan(θ)\text{Base} \times \tan(\theta)
- Area using sine: 12absinC\frac{1}{2}ab\sin C
- Heron’s formula = s(s−a)(s−b)(s−c)\sqrt{s(s-a)(s-b)(s-c)}, where s=a+b+c2s = \frac{a+b+c}{2}
- Angle in semicircle = 90∘90^\circ
- Circle theorem: Angle subtended by same arc is equal
🧾 Sequences & Series (151–175)
- Arithmetic Series sum = n2(2a+(n−1)d)\frac{n}{2}(2a + (n – 1)d)
- nth term of AP = a+(n−1)da + (n – 1)d
- nth term of GP = arn−1ar^{n-1}
- Sum of n terms in GP = a(rn−1)r−1\frac{a(r^n – 1)}{r – 1}
- Infinite GP = a1−r\frac{a}{1 – r}, when ∣r∣<1|r| < 1
- Sum of n odd numbers = n2n^2
- Sum of n even numbers = n(n+1)n(n + 1)
- Fibonacci Sequence: Fn=Fn−1+Fn−2F_n = F_{n-1} + F_{n-2}
- Triangular number = n(n+1)2\frac{n(n+1)}{2}
- Factorial: n!=n×(n−1)!n! = n \times (n-1)!
- Double factorial: n!!=n(n−2)(n−4)…n!! = n(n-2)(n-4)…
- Sum of AP in reverse order = Same as original
- Square number = n2n^2
- Cube number = n3n^3
- Pascal’s Triangle gives binomial coefficients
- Binomial Theorem: (a+b)n=∑k=0n(nk)an−kbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k
- (nk)=n!k!(n−k)!\binom{n}{k} = \frac{n!}{k!(n-k)!}
- Series of reciprocal natural numbers: Harmonic Series
- Arithmetic mean ≥ Geometric mean ≥ Harmonic mean
- Number of subsets = 2n2^n
- Number of proper subsets = 2n−12^n – 1
- Sum of all subsets = (1+a1)(1+a2)…(1+an)(1 + a_1)(1 + a_2)…(1 + a_n)
- Number of ways to choose r items = (nr)\binom{n}{r}
- Number of permutations = n!n!
- Circular permutation = (n−1)!(n-1)!
🧠 Logical & Reasoning Based (176–200)
- If ax=ba^x = b, then x=logabx = \log_a b
- Truth table: AND = A∧BA \land B, OR = A∨BA \lor B
- XOR logic = A⊕BA \oplus B = true if A ≠ B
- De Morgan’s Law: ¬(A∧B)=¬A∨¬B\neg (A \land B) = \neg A \lor \neg B
- Negation of implication: ¬(A⇒B)=A∧¬B\neg (A \Rightarrow B) = A \land \neg B
- Contrapositive of A⇒BA \Rightarrow B is ¬B⇒¬A\neg B \Rightarrow \neg A
- Set union: A∪BA \cup B
- Set intersection: A∩BA \cap B
- Set difference: A−BA – B
- Complement: AcA^c = elements not in A
- Cartesian Product: A×BA \times B
- Modulo operation: amod ba \mod b
- Floor function: ⌊x⌋\lfloor x \rfloor
- Ceiling function: ⌈x⌉\lceil x \rceil
- Absolute value: ∣x∣|x|
- If ax+by=cax + by = c, it’s a linear Diophantine equation
- Pythagorean triplets: a2+b2=c2a^2 + b^2 = c^2
- Euler’s formula: V−E+F=2V – E + F = 2 (polyhedra)
- Prime factorization = Breaking into product of primes
- Check for divisibility by 9: Sum of digits ÷ 9
- Average = Total sumNumber of terms\frac{\text{Total sum}}{\text{Number of terms}}
- Rate = Quantity ÷ Time
- Ratio = Comparison of two values
- Proportion: a:b=c:d⇒ad=bca:b = c:d \Rightarrow ad = bc
- Percentage change = New – OldOld×100\frac{\text{New – Old}}{\text{Old}} \times 100